
BIOINFORMATICS Vol. 00 no. 00 2005

Pages ???

Parametric Bayesian Priors and Better Choice of Negative

Examples Improve Protein Function Prediction

Noah Youngs 1, Duncan Penfold-Brown 2, Kevin Drew 2, Dennis Shasha 1,⇤,
and Rich Bonneau 1,2 ⇤

1Department of Computer Science, New York University, New York, USA
2Center for Genomics and Systems Biology, Department of Biology, New York University, New York,
USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 SUPPLEMENT

GeneMANIA Label Propagation Solution
In Gaussian Random Field label propagation, the discriminant
values defining the ranking of predictions are obtained by solving an
optimization problem which seeks to let prior label information flow
throughout the network, mitigated by the strengths of the edges in
that network, while at the same time constraining the labels of nodes
to remain close to their prior value. The final discriminant vector ~

f

is obtained by solving the optimization problem:

min
f

(
X

(fi � yi)
2 +

XX
Wij(fi � fj)

2) (1)

Whose analytical solution is obtained by solving:

(I + L)~f = ~y (2)

With L=D�W , where I is the identity matrix, ~y is the vector
of prior beliefs, W the pairwise similarity matrix obtained by
integrating multiple data types, and D is a diagonal matrix with
Dii =

P
j Wij . Obtaining this solution only requires solving a

linear system of the form Ax= b, and with proper normalization
of W , A is guaranteed to be symmetric positive-definite. Thus the
conjugate gradient algorithm can speedily and reliably solve for the
discriminant vector ~

f .

GeneMANIA Network Combination
The original GeneMANIA algorithm (Mostafavi et al., 2008)
solved the problem of combining disparate data similarity networks
through a data-driven optimization that maximizes the similarity
between pairs of positively labeled genes and minimizes the
similarity between genes of opposite labels. This is accomplished
by calculating the final network W

⇤as the weighted sum of each
individual network Wi, with the weights chosen to solve:

~↵

⇤ = min
~↵

(⌦~↵� ~

t)|(⌦~↵� ~

t) (3)

If there are n nodes, pl positively labeled nodes, nl negatively
labeled nodes, and h different data types, then ⌦ is a (pl2 + pl ⇤nl)
by h matrix, where each column contains all of the entries in Wi

corresponding to the positive-positive and positive-negative label
pairs. The target vector ~

t contains the values: nl
n

2 for positive-
positive pairs and �nlpl

n2 for positive-negative pairs, in order to deal
with class imbalance in the labeled data. The resulting vector ~↵⇤ will

⇤to whom correspondence should be addressed

have length equal to the number of different data-types (possibly
with some zero entries to signify data that was not discriminative)
and contain the relative importance of each data-type determined by
the algorithm.

Parameter Tuning Ranges
We present a pseudocounting procedure for our Bayesian functional
bias method in section 3.1 of the main text. This procedure
addresses the issue of low sample size that occurs in many functions,
and expresses the hypothesis that the number of undiscovered
occurrences of a function is related to the number that are currently
annotated. In order to tune our pseudocounting procedure for each
evaluation scenario, we sample from a range of parameters: � 2
[0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512] and � 2 [-0.05, -0.025,
-0.0125, -0.00625, -0.003125, 0, 0.003125, 0.00625, 0.0125, 0.025,
0.05], where � and � define our label bias pseudocount:

p̂

0(c|m) =
n

+
mc

n

+
m + �e

�n+
m

(4)

Including �=0 in the range allows for the potential for a constant
pseudocount (or no pseudocount at all if �=0). We also test values
of µ in [.05, .1, .15,, .9, .95], where µ is the parameter guiding
the relative importance of the smoothness and consistency terms in
the GRF objective function (see section 3.5 of the main text):

min
f

µ

X
(fi � yi)

2 + (1� µ)
XX

wij(fi � fj)
2) (5)

Network Weighting
As described in Mostafavi and Morris (2010), the Simultaneous
Weights (SW) algorithm, which fits network weights to multiple GO
categories at the same time, operates by solving the equation:

~↵

⇤ = min
~↵

�2~↵|⌦~t| + h~↵

|⌦|⌦~↵ (6)

with ↵d � 0, and ~

t =
Ph

c=1
~

tc where each c is a different GO
category in the same branch of the hierarchy. This equation is a
simplification of the formulation:

~↵

⇤ = min
~↵

hX

c=1

(~tc � ⌦c~↵)
T (~tc � ⌦c~↵) (7)

c� Oxford University Press 2005. 1

N. Youngs et al

This simplification is made possible by considering negative-
negative pairs of labels as well as the positive-positive and positive-
negative pairs, and by treating all non-positive nodes as negative
nodes, which causes all ⌦c to be identical, and all ~tc vectors to be
the same length.

As mentioned in the main text, Mostafavi and Morris (2010)
showed these simplifications do not hamper performance, and also
showed a better fit to all GO categories in a particular branch (GO-
BP, GO-CC, or GO-MF) than any other subset or grouping of GO
categories.

Our modification to the network combination algorithm relies
on returning to the formulation of Equation (7) but also maintains
the unique ⌦c matrices dependent upon both the positive labels
and the specific negative examples chosen for category c. Such
a formulation still has an analytical solution:

P
c ⌦

|
c
~

tc =
(
P

c ⌦
|
c⌦c) ~↵⇤, which can be efficiently solved with a Cholesky

decomposition, as (
P

c ⌦
|
c⌦c) is positive definite and is only h

by h in dimension, with h being the number of data sets to be
combined. We refer to our network algorithm as Simultaneous
Weights with Specific Negatives (SWSN), and note that while the
SW algorithm is run on all categories with less than 300 annotations,
we fit our SWSN algorithm only to the set of categories where
function prediction is to be performed (between 400-500 categories
for each benchmark). Our experiments indicate that this reduction
in the number of categories fit has a negligible impact on any of the
performance metrics.

Successive Block Conjugate Gradient Algorithm
After observing the repetitive nature of the optimization problems
required to solve Equation (1) in the main text, which must be solved
for each function, we propose the use of a new class of optimization
technique which deals with sets of linear equations with differing
right-hand-sides.

The Successive Block Conjugate Gradient (SBCG) algorithm,
originally proposed by Surajana and Law (1994), solves a set of
optimization problems of the form Aix = bi, were all Ai are
identical and only the bi differ. This situation arises in GRF protein
function prediction, as for each function we solve:

(I + L)~f = ~y (8)

With L=D�W , where I is the identity matrix, W the pairwise
similarity matrix obtained by integrating multiple data types, and
D is a diagonal matrix with Dii =

P
j wij . Since we compute W

from all function categories at once, it is identical accross functions,
and thus only the ~y vector differs, creating a situation suited to the
SBCG algorithm.

The algorithm proceeds by computing a block search direction
for all the residual vectors simultaneously. If at any point
this search matrix becomes rank deficient, dependent residual
vectors are moved to a secondary system, but still updated with
information from the primary system, and thus continue to proceed
to convergence. Accordingly, for each step of the algorithm
computation is saved by sharing information across all of the right-
hand -side problems.

Pseudocode for our adaptation of SBCG (adaptations described
in section 3.4 of the main text) is found in algorithm SA1.

Algorithm SA1 SBCG Algorithm, solving AX = B
R represents the matrix of residuals, while the m, s and c

superscripts denote the primary, secondary, and converged set of
residual vectors

Initialize: k = 0; R0 = B�AX0

Let Rm = R0, Rs = {}, Rc = {}
Let Xm = X0, Xs = {}, Xc = {}
Let col{X} = the number of columns in X
while col{Rc} < col{B} do

while col{Rm} > 0 do
k = k + 1

% Update search direction

if k = 1 then
P1 = R0

else
Solve: (Rm

k�2)
|Rm

k�2� = (Rm
k�1)

|Rm
k�1

Pk = Rk�1 +Pk�1�

end if
Orthonormalize Pk, identify dependent indices d

% Move dependent vectors to secondary system

Rm = Rm\d, Rs = Rs[d

Xm = Xm\d, Xs = Xs[d

% Solve for search direction and steplength

Uk = APk

Solve: P|
kUk[↵

m
k ,↵

s
k] = [(Rm

k�1)
|Rm

k�1, (R
s
k�1)

|Rm
k�1]

% Update iterates

[Xm
k ,Xs

k] = [Xm
k�1,X

s
k�1] +Pk[↵

m
k ,↵

s
k]

[Rm
k ,Rs

k] = [Rm
k�1,R

s
k�1]�Uk[↵

m
k ,↵

s
k]

% Remove converged columns

for all i 2 m [s do
if k(Rm

k)ik< ✏ then
if i 2 m then

Rm = Rm\i, Rc = Rc[i

Xm = Xm\i, Xc = Xc[i

else
Rs = Rs\i, Rc = Rc[i

Xs = Xs\i, Xc = Xc[i

end if
end if

end for
end while

% If we have unconverged secondary columns, restart

R0 = Rs, X0 = Xs, k = 0
Rm = R0, Rs = {}
Xm = X0, Xs = {}

end while

Parameter Tuning
In order to tune the various parameters for our algorithm, we must
create a subset within the training data in order to measure the
performance of different parameter combinations (see section 3.5
of the main text). We begin by subdivide the training data into a
tuning subset and a validation subset, with sizes of 3/4 and 1/4 of
the training data respectively. We also ensure that the proportion
of genes with any GO annotations to those that are completely
unannotated are the same in each subset, to preserve the similarity
of the training environments. Next, we must adjust the tuning subset

2

Parametric Bayesian Priors and Better Choice of Negative Examples

to be representative of the original learning scenario. For the test
scenario, such a task is trivial, as all annotations are removed for
validation unlabeled genes. For the novel scenario, however, the task
is more difficult, as the novel scenario in general involves predicting
functions for genes which may already have some annotations. We
address this issue with the following algorithm:

After splitting out training data into a training and validation
subset, we create a novel-like tuning environment by removing a
random subset of annotations from a smaller subset of genes in
the validation subset, as well as completely removing annotations
for some of the validation genes, to simulate a non-systematic
addition of partial annotations. The eliminated annotations are then
used to evaluate the performance of the algorithm on the training
subset of the training data. Any categories where no annotations
were removed from the validation subset are deleted from the list
of categories to be predicted. The final result is a set of training
and validation data derived entirely from the original training data,
which are similar to the final learning problem for the novel mouse
and novel yeast evaluation scenarios. Pseudocode for this procedure
is presented in Algorithm SA2.

It is often the case that different combinations of parameters
will perform better when evaluated by some metrics, and worse
when evaluated by others. Combining evaluation metrics into one
score proves difficult, as the same magnitudes of difference between
the scores of different combinations of parameters does not have
the same meaning in different metrics (for example a move in
AUCROC from .97 to .98 is far more significant than a move in
AUCPR from .10 to .11, or even a move in AUCROC from .50
to .51), and a normalization scheme would create dependency on
which sets of parameters were selected to evaluate. We choose to
define our parameter score as the average of the TopScore metrics
(see section 4.4 of the main text), and choose the combination of
parameters that maximizes this score. We find that this choice of
parameter score improves performance across other metrics as well.

When applying the SBCG algorithm, described in section 3.4 of
the main text, to the parameter tuning problem, we find a large
amount of rank deficiency among the label biases from the different
combinations of parameters in our candidate value sets. Therefore
we prefer to apply SBCG longitudinally, solving for all functions at
once with a particular set of parameters, rather than solving for all
combinations of parameters for a particular function. The greatest
performance gain would undoubtedly stem from a framework where
all blocks are solved simultaneously in one large system, but we did
not explore this option.

Evaluation biases
Pena-Castillo et al. (2008) remarks that there appears to be a
qualitative difference between the two types of evaluations used
in MouseFunc: the test set (a manually selected leave-out set of
genes where all known GO annotations are removed), and the novel
set (a set of genes that have acquired new GO annotations at a
later time period than the training data). We find that indeed the
performance of all algorithms is markedly higher on the test set than
on the novel set (see section 5.1 of the main text). This dichotomy
in performance is mirrored in later work by Mostafavi and Morris
(2009), which uses the same evaluation setup on more recent GO
data. We hypothesize two different factors underlying the relative
strength of test performance compared to novel performance:

Algorithm SA2 Synthetic Novel Set Generation

Separate training data into two sets: ⌥ and
Let � be a set with the same genes as , but with no annotations
Define !, ⌫ 2 {0,1}

% First remove all annotations from a subset of genes

for i = 1 ! ! ⇤ | | do
Set the annotations for gene �i equal to all annotations for i

Remove all annotations for gene i

end for
% Now remove partial annotations from a subset of genes

for all GO terms g present in do
Let n = the count of term g in both � and
Let l = n*⌫ - (count of term g in)

for i = 1 ! l do
Choose random j s.t. gene j has annotation g

Let set c contain g and all children of g annotated to j

Add annotations c to �j

Remove annotations c from j

end for
end for

% Now run predictions on sets ⌥ and
% Validate with annotations present in �

The first is the fluidity of the GO ontology itself. Annotations
are not set in stone, and can be added and deleted depending upon
further review of the evidence. The structure of the hierarchy is also
mutable, with further annotation changes caused by re-structuring as
annotations from old ancestors are deleted and new ancestors added
in order to ensure the true-path rule is honored. In summary, GO
annotations change significantly over time, causing performance
degradation in predictions that span a large temporal gap, such as
in the MouseFunc novel evaluation scenario.

The second possible factor lies in the interdependence of both
the data and the annotations on sequence-similarity-based methods.
Several of the included data-types: Pfam, Interpro, OMIM, etc. use
strong sequence similarity to propagate data amongst proteins. The
same is true of GO annotations, where computational predictions
can be assigned based on homologues after manual review. Thus
even if the annotations are entirely removed for the test set, the
sequence-similarity links underlying those annotations are still
present in the data and thus make the annotations more easily
recoverable. This interdependence would be less true in the novel
scenario, as one would expect that most of the homologues known
at the time that the training data was gathered would have already
been annotated in GO as well, and so the majority of the novel
annotations likely come from experimental evidence or from newer
sequence-similarity searches that are not reflected in the training
data.

Evaluation Metrics
The two traditional measures of classifier performance are the
ROC curve, which plots (true positives)

(true positives + false negatives) as a function
of (false positives)

(false positives + true negatives) , and the PR curve, which plots
(true positives)

(true positives + false positives) as a function of (true positives)
(true positives + false negatives) .

Authors often present ROC performance in terms of the Area Under
the Curve (AUC), and usually select a few fixed recall values for

3

N. Youngs et al

which to present precision statistics (although the AUC is also a
valuable summary of the PR curve). For ROC, the AUC area has
a nice interpretation: the probability that a randomly chosen true
positive will be ranked higher by the classifier than a randomly
chosen true negative. For PR, no such neat interpretation exists, but
the area does represent how close the classifier is to a perfect oracle,
which would predict no false positives and have an AUC of 1.

While both performance measures attempt to describe how well
the ordering of discriminant values captures the true positive and
negative labels, each tends to reward slightly different behavior.
AUCPR has the largest marginal difference at the top of the ranking
range, where a move from rank 1 to rank 2, for example, causes a
drop of 50% in precision, while the relative impact of a downward
move in rank decreases exponentially farther lower on the list.
Conversely, AUCROC moves linearly with list ordering, and so in
data sets with large skew, differences between the highest orderings
are quite small. As a result, AUCPR will reward a combination of
excellent and poor ranking, while AUCROC would prefer mediocre
ranking across all labels, as shown in figure S1.a.

Many authors prefer the AUCROC measure when comparing
algorithms, as it provides a global view of the rankings of all labels.
For the protein function prediction problem, however, the skew of
the dataset is generally large, and so the AUCROC score loses
objective value. As seen in figure S1.b, a relatively poor-performing
classifier can receive a very high AUCROC score, simply because
the large number of true negatives implies that the algorithm could
have been much worse. In such a case, the AUCPR score can be
more informative for an experimentalist, as it describes, given a goal
of discovering a certain percentage of the genes that truly have a
given function, what percentage of experiments will be wasted.
AUCPR is not without faults, however, as the non-linearity of

score can cause confusion when averaging the performance of a
classifier over several different functional categories. Figure S1.c
and S1.d illustrates such a case, where large improvement in one
poor classifier is drowned out by a small decrease in performance of
an excellent classifier.

Our TopScore metric (described in section 4.4 of the main
text) preserves the interpretability of precision while alleviating
some of the complications arising when averaging AUCPR over
multiple functions. Figure S1.c and S1.d illustrate the differences in
TopScore alongside the average AUCPR, showing that TopScore
correctly captures the average improvement in classification.

Parameter Tuning Results
As described in section 3.5 of the main text, the parameters are
chosen via a tuning process on the training data that computes a
combined score for all combinations of candidate parameters �, �,
and µ. In general, the scores from several different combinations
of parameters were quite similar, indicating possible fluctuation in
parameter choice dependent upon the randomization in the creation
of the synthetic novel tuning set.

The best parameters resulting from the tuning process in each
scenario are listed in table Table 1, and the positive values for �

in the novel scenarios are evidence for the 2nd hypothesis put forth
in section 3.1 of the main text, that the undiscovered occurrences
of a function are dependent on its specificity and so are positively
correlated with the number of annotations already observed. We also
note that the µ parameter had a significant impact in all scenarios,

Table 1. Tuned parameters for each evaluation benchmark
(see Equations 3 and 4 in the main text for parameter
definition)

Evaluation Scenario � � µ

Mouse Novel 64 0.0125 0.15
Mouse Test 2 0.025 0.1
Yeast Novel (and Gold Standard) 32 0.0125 0.35

indicating the information contained in the association network was
more important than restricting genes to their prior biases.

Further investigation shows that an observation-based guess of
the parameters (�=16, �=-0.0125, ↵=0.4) performs competitively
with the tuned parameters. Table 2, the results are shown for our
ALBias algorithm with naive parameters (�=0, �=0, ↵=0.5), tuned
parameters (values dependent on the evaluation scenario), and a
set of guessed parameters (�=16, �=-0.0125, ↵=0.4). The guessed
parameters perform as well or better than the tuned parameters on
many evaluation metrics, indicating that further work is required
on the parameter tuning process. The difference in performance
appears mostly separable by evaluation scenario, where it seems
the tuning process works very well on the mouse novel set, but
is less competitive on the mouse test and yeast novel evaluations.
As mentioned in the main text, the performance difference in yeast
in particular is likely due to the fact that the novel tuning process
attempts to recreate a situation of partial annotation, which is truer
of a less-studied organism (mouse) than of a more studied organism
(yeast).

In order to guarantee that the parameter tuning process provides
optimal results for all evaluation settings, our synthetic novel
tuning set must be more representative of the true learning task at
hand. One possible solution to this problem would be to tune the
parameters with a third set of actual GO annotations further back in
time, so parameters would be tuned with data from year X on year
X+1, then predictions made from year X+1 and evaluated with year
X+2. Another possible approach would be to tailor the creation of
the synthetic novel set more specifically to the proteome in question,
by examining the fraction of unannotated genes, average number of
annotations per gene, and other descriptive statistics.

Whatever the solution, we believe the performance gain in
the mouse novel and yeast gold standard evaluation settings
indicates the usefulness of the pseudocounting parameters, and that
performance will increase once a more broadly applicable tuning
algorithm is developed.

Evaluation Results
Figure S2 presents the same results as Figure 2 in the main text,
but breaks down the results by the specificity of the function.
The algorithms compared are the original MouseFunc GeneMania
algorithm, the SW GeneMania algorithm presented in Mostafavi
and Morris (2010) using sibling negative examples, the SW
algorithm combined with the HLBias algorithm of Mostafavi and
Morris (2009), and two versions of our algorithm, SWSN with
ALBias and naive parameters (�=0, �=0, ↵=0.5), and SWSN with
ALBias and tuned parameters. The performance evaluations are
averaged over functions within the same specificity buckets used

4

Parametric Bayesian Priors and Better Choice of Negative Examples

Figure S1 (a) AUCPR and AUCROC scores for an excellent/poor and a mediocre/mediocre ranking of two true positives amidst 1,998 true
negatives. (b) High AUCROC score of a poor ranking of one true positive amidst 9,999 true negatives. (c) Average AUCPR and TopScore
values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and and a poor classifier of 3 true positives amongst 5,997
trues negatives. (d) Average AUCPR and TopScore values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and
and a mediocre classifier of 3 true positives amongst 5,997 true negatives.

Table 2. Performance metrics for Naive Parameters (NP), Guessed Parameters (GP)
and Tuned Parameters (TP)

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
NP (�=0, �=0, ↵=0.5) 0.8577 0.2773 0.3852 0.6435 0.8839

GP (�=16, �=-0.0125, ↵=0.4) 0.8604 0.3224 0.4343 0.6425 0.8887

TP (�=64, �=0.0125, ↵=0.15) 0.8616 0.3463 0.4696 0.6438 0.8956

Mouse Test
NP (�=0, �=0, ↵=0.5) 0.9352 0.5200 0.6318 0.8157 0.9605

GP (�=16, �=-0.0125, ↵=0.4) 0.9352 0.5184 0.6377 0.8129 0.9604

TP (�=2, �=0.025, ↵=0.1) 0.9389 0.5023 0.6269 0.8222 0.9723

Yeast Novel
NP (�=0, �=0, ↵=0.5) 0.9102 0.4917 0.6066 0.8536 0.9425

GP (�=16, �=-0.0125, ↵=0.4) 0.9122 0.4897 0.6452 0.8512 0.9432

TP (�=32, �=0.0125, ↵=0.35) 0.9000 0.4714 0.6232 0.8126 0.9405

*For the yeast novel scenario, TopScore100 and TopScore1000 are replaced by TopScore50 and
TopScore200

in the MouseFunc competition.
We see a strong performance increase for our SWSN, ALBias

algorithm in the mouse novel evaluation setting, evenly spread
across both specific and non-specific GO terms, as can been seen
in Figure S2.a. For the mouse test set, performance was strongest
for the most specific categories, but suffered somewhat in more
general categories when compared to the current GeneMANIA
algorithm (Figure S2.b). In the yeast novel setting (Figure S2.c),
there was an interesting correlation between the specificity of the
function, and the performance discrepancy between the tuned and
untuned versions of our algorithm. As the specificity increased, the
performance of the untuned parameters widened the gap, whereas
for the most general GO terms, the tuned parameters actually
performed better in nearly every metric, despite performing worse
in the all-term averages presented in the main text.

Yeast Performance Improvement Examples
Examination of the GO terms for which our algorithm exhibited the
greatest improvement in the yeast novel evaluation scenario, showed
many occurrences of the label biases of validation true positives
being improved by the use of GO annotations from branches other
than Biological Process (the branch of the GO terms targeted for
prediction). While it is likely that other changes in our algorithm
contributed to the performance increase as well, the only observed
systematic change in the predictions with most-improved metrics
was the aforementioned bias improvement. One example of non-BP
terms aiding in the prediction task was discussed in the main text,
but we have included several more below to further demonstrate this
occurrence.

Another example comes from term ”cell cycle checkpoint” where
our algorithm increased AUCROC from 0.363 to 0.974 and AUCPR
from 0.001 to 0.140, stemming from the improvement in rankings
of two genes that had no BP data and weak affinity to positive
examples in the data, but possessed useful annotations in other
branches of GO. Gene YCL024W moved from a ranking of 361st to
15th, owing to its Cellular Component annotation of ”cellular bud”,
and its Molecular Function annotations of ”protein kinase activity”,
and ”phosphotransferase activity, alcohol group as acceptor”, while
gene YCL060C moved from rank 101 to rank 7, thanks to CC
annotations of ”replication fork”, ”nuclear chromosome”, and
”chromosomal part”.

A third example is the term ”monosaccharide metabolic process”,
which showed improvement in AUCROC from 0.713 to 1.0 and
AUCPR from 0.514 to 1.0 from the application of our algorithm.
Gene YCL040W moved from rank 256 to rank 1, owing to the label
bias generated by the MF term ”carbohydrate kinase activity”. This
term also improved the label bias for gene YCR036W, elevating it
from a ranking of 54th to 3rd.

A final example lies in the term ”M phase” (proteins involved
in nuclear division and cytokinesis), where our algorithm increased
AUCROC from 0.769 to 0.892 and AUCPR from 0.408 to 0.603.

5

N. Youngs et al

Figure S2 Performance metrics in (a) the novel scenario in mouse (488 functions, 1954 genes), (b) the test scenario in mouse (442 functions,
1718 genes), and (c) the novel scenario in yeast (511 functions, 342 genes). Metrics are presented for several buckets of specificity based
on the number of observed occurrences in the genome in question: [3-10], [11-30], [31-100], and [101-300]. Error bars are one standard
deviation of the error in the mean.

We find the primary cause to be the true positive gene YHR079C-
B, which moved from a ranking of 75th to 1st, despite having no
Biological Process annotations in the data, thanks to its Cellular
Component annotation of ”condensed nuclear chromosome”, which
has a high joint probability with ”M phase”.

Many more examples exist of the contribution, primarily from
Cellular Component terms, of annotations from other branches of
GO improving the biases of genes in the prediction tasks where our
algorithm improved performance the most. It is not immediately
apparent why this effect was so pronounced in yeast, while other
algorithmic changes seemed to be more useful in mouse, but it
is clear that there is useful information to be gleaned across the
different branches of the GO hierarchy when computing prior biases
for function prediction.

Computational Cost
As we have proposed a new optimization technique for computing
our functional predictions, we analyze the computation cost of our
algorithm compared with that employed by the original GeneMania
formulation (see section 3.4 of the main text). The computational

complexity of the conjugate gradient algorithm used to solve the
GRF problem in GeneMania is O(n2) per iteration. As the algorithm
must be applied to all functions, this yields a complexity of O(d⇤n2)
per iteration where d is the total number of GO categories to be
predicted. The per-iteration cost of our Successive Block Conjugate
Gradient Variant is O(d ⇤ n

2 + d

2 ⇤ n + d

3). It is hard to imagine
a case where d > n, and in fact most often n >> d, as in the
original MouseFunc competition where n = 21,603 genes and d =
488 categories for the novel evaluation. In such cases the complexity
of SBCG reduces to O(d ⇤ n2) as well.

Although the per-iteration complexity of both algorithms is
similar, the number of iterations required is not identical, nor are the
constants applied to each. Since the exact complexity of SBCGV is
conditional on the size of the dependent system, and whether or not
a secondary phase is required, we turn to an empirical evaluation of
flops in order to measure algorithmic performance. Table 4 shows
the comparison of the flops required to solve the GRF problem for
each function individually with the conjugate gradient algorithm,
and the flops required by the simultaneous SBCG algorithm, for
different numbers of categories, as well as the final norm of the
residual matrix: norm(Ax-b).

6

Parametric Bayesian Priors and Better Choice of Negative Examples

Table 3. Flops and error (norm of the residual) results for the SCBG algorithm, and Conjugate Gradient
(CG) algorithm applied sequentially

Evaluation Scenario # of RHS Sequential CG SBCG

Flops Error Flops Error

Mouse Example 10 1.8206e+11 1.4869e-08 1.5343e+11 1.1381e-08

Mouse Param. Tuning 342 5.8418e+12 6.1187e-08 4.0961e+12 5.8895e-08

Mouse Param. Tuning 1420† 2.4178e+13 1.1884e-07 1.6844e+13 9.1782e-08

Yeast Param. Tuning 426 1.9368e+11 3.3293e-08 1.5216e+11 3.7322e-08

Yeast Param. Tuning 1704‡ 7.9071e+11 8.8582e-08 6.1603e+11 5.5898e-08

† split into subsets of 474, 474, and 472. ‡ split into 4 subsets of 426.

REFERENCES

Mostafavi, S., Ray, D., et al. (2008) GeneMANIA: A real-time multiple association
network integration algorithm for predicting gene function. Genome Biol., 9(Suppl.
1), S4.

Mostafavi, S., and Morris, Q. (2009) Using the Gene Ontology hierarchy when
predicting gene function. UAI Conference Proceedings, 2009.

Mostafavi, S., and Morris, Q. (2010) Fast integration of heterogeneous data sources for
predicting gene function with limited annotation. Bioinformatics, 26, 1759-1765.

Peña-Castillo, L., Tasam, M., et al (2008) A critical assessment of Mus musculus gene
function prediction using integrated genomic evidence. Genome Biol., 9(Suppl 1.),
S2.

Suarjana, M., and Law, K. H. (1994) Successive conjugate gradient methods for
structural analysis with multiple load cases. Int. Journal for Num. Methods in Eng.,
37(24), 4185-4203.

7

